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AbstractDemonstration of the viability of cryopreserved
cell bank used to make a biopharmaceutical product is
an important indicator of the ability to consistently
manufacture over a long period of time, and is man-
dated in regulatory guidances. A mnn9 strain of Sac-
charomyces cerevisiae, chosen for its inability to
hypermannosylate vaccine antigens, has a clumpy
growth tendency due to the inactivation of the gene
MNN9 (wild-type), complicating the interpretation of
conventional viability measurements useful for single
cells. Therefore, two growth-based measurements as well
as staining by a membrane-impermeable dye were
examined for their ability to reflect changes in viability
of a clumpy mnn9 (defective) strain. The cell clumps
proved to be stable to mixing, and variability of agar-
plate-based viable counts (VC) of undisrupted suspen-
sions of this clumpy mnn9 strain was consistent with
variability observed for cell banks of a non-clumpy
MNN9 strain. Both the VC and the growth times in an
oxygen-sensing broth-based microplate assay corre-
sponded well with shake-flask growth times for a set of
stressed and unstressed samples, although the correla-
tion was highest between the two broth-based systems.
Counts of trypan-blue-stained cells within clumps also
increased with time of stress, suggesting that this method
could be adapted as a simple index of viability as well.
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Introduction

Manufacture of pharmaceutical biological products
generally begins with inoculation of media with cells
from a cryopreserved cell bank. Regulatory guidances
specify that the viability of the stored cells be demon-
strated as part of qualification of the cell bank [4–6, 11,
24]. In fact, as long as viability remains stable during
storage, it is unlikely that other characteristics of the cell
bank (i.e. recombinant expression system) would require
further verification at intervals during cryopreserved
storage to meet regulatory requirements [11].The mnn9
strain of Saccharomyces cerevisiae, such as that devel-
oped for the manufacture of a recombinant vaccine
protein [12] presents a challenge for testing the viability
of inocula intended for manufacturing. The strain,
chosen for its inability to hypermannosylate potential
vaccine antigens [12], grows as a population of clumps of
up to dozens of cells each. Clumpiness is associated with
a defect in outer-chain mannosylation [2] of cell-wall
glycoproteins by the mnn9 strain [8], and is attributed to
failure of cells to separate completely after budding [2].
The gene responsible for the outer-chain glycosylation
(MNN9) has been cloned, enabling the generation of
stable mutants with similar phenotypes by targeted gene
disruptions [25]. Consistent with standard yeast genetic
nomenclature, MNN9 and mnn9 denote the wild-type
and defective genes, respectively.

Clumpy cell populations intuitively complicate the
assessment of viability by methods that require exami-
nation of individual cells (i.e. microscopy) in order to
count cells labeled with viability dyes, such as described
by Heggart et al. [9], or those which do not distinguish
growth arising from clumps versus growth from single
cells (i.e. agar-plate-based colony counts, such as
described in [9] and [13], or end-point dilution such as
described in [13]).

We examined two growth-based measurements for
their ability to reflect changes in the viability of a clumpy
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mnn9 strain, and briefly explored a cell-staining method.
The stability-indicating nature of each assay was also
demonstrated. We report here our key observations
regarding the ability of these methods to reflect the
viability of a clumpy mnn9 strain of S. cerevisiae.

Materials and methods

Yeast strains

The Saccharomyces cerevisiae mnn9 strains used in this
study were derived from strain 1558 by incorporation of a
functional ADE1 gene and transformation with plasmids
encoding HPV L1 antigens under a galactose-inducible
expression system like that previously described [10].
Strain 2150-2-3 bears the wild-type MNN9 [7] and was
used for determining the variability of the viable counts
(VC) assay for a non-clumpy yeast strain.

Growth media

Two agar-plate formulations were used to enumerate
colonies. Non-selective YEHD agar plates used for
strain 2150-2-3 contained 10 g soy peptone/l , 20 g yeast
extract/l , 16 g dextrose/l and 20 g agar/l . Selective agar
medium lacking adenine and L-leucine (ade–leu-agar)
used for the mnn9 strains contained 40 g dextrose/l , 20 g
agar/l , 10 g succinic acid/l , 8.5 g yeast nitrogen base
without amino acids and ammonium sulfate/l (Difco,
Franklin Lakes, N.J., USA, cat. no. 233520), 5 g
ammonium sulfate/l , 0.3 g of each of L-isoleucine and
L-phenylalanine/l, 0.25 g L-tyrosine/l , 0.2 g of each of
uracil, L-lysine, and L-tryptophan/l, 0.1 g L-arginine/l,
and 0.05 g L-histidine/l. The pH was adjusted to 5.3–5.5
with 50% (w/v) NaOH. All plates were inoculated with
0.1 ml of sample diluted in either phosphate-buffered
saline or 1 M sorbitol, and incubated at 30�C for 2–
3 days. Liquid cultures were grown in selective ade–leu-
medium formulated as in the plates except without agar.
Unless otherwise noted, all reagents throughout were
procured from Sigma (St. Louis, Mo., USA).

Agar-plate-based viable counts

Samples of the mnn9 strain were diluted in tenfold series
in either saline (0.15 M NaCl), phosphate-buffered sal-
ine (saline with 0.1 M phosphate, pH 7.2), or 1 M sor-
bitol. In preliminary experiments, no appreciable
difference was observed among diluents. Aliquots of
100 ll were inoculated onto each of at least two replicate
plates, and inocula were distributed over agar surfaces
with disposable plastic spreaders. After 2–3 days incu-
bation at 30�C, colonies were counted. Means across the
replicate plates within the range of 30–300 colonies per
plate were used to calculate colony-forming units

(CFU)/ml after correcting for volume and dilution
factors.

Shake-flask cultures

Shake-flasks (250 ml) containing 50 ml each of ade–leu-
broth were each inoculated with thawed cryopreserved
aliquots of the mnn9 strains (0.5 or 1% v/v) and incu-
bated at 30�C with shaking (250 RPM, Gyromax 703,
Amerex Instruments, Lafayette, Calif., USA) for up to
2 days. Aliquots of 0.5 ml were aseptically collected
from flasks at various timepoints during culture to
monitor glucose consumption. Samples were frozen for
subsequent glucose analysis using the YSI-Bioanalyzer
2700M system (YSI, Yellow Springs, Ohio, USA.).

Oxygen-sensing microplate assay

A 96-well plate containing an embedded oxygen-sensi-
tive fluorophore in each well (Oxygen Biosensor System,
Becton Dickinson, San Jose, Calif., USA) was used to
monitor oxygen consumption as a function of cellular
metabolism and growth. Selective ade–leu-broth (200 ll)
was added to each well. Twofold dilutions of each
sample were added to triplicate wells (20 ll/well, 10% v/
v) and then a covering of mineral oil (50 ll/well) was
added to minimize oxygen transfer with the atmosphere.
Plates were incubated at 30�C in a fluorescence plate
reader (Gemini FS, Molecular Devices, Sunnyvale, Ca-
lif., USA ) and monitored for fluorescence (ex 485 nm,
em 630 nm) each hour for up to 18 h. Fluorescence
signal was normalized for background by dividing the
mean for each triplicate set of wells at each timepoint by
the mean value at time zero, yielding relative fluores-
cence units. Plates were typically inoculated with two to
eightfold dilutions of the cell-bank samples, corre-
sponding to a maximum inoculation of roughly 5·104
CFUs per well. In a typical assay, direct microscopic
counts of cell clumps increased �25- to 30-fold, or
nearly five doublings.

Trypan-blue cell staining and counting

In preliminary experiments, 20 ll of sample was added
to 60 ll of 0.4% trypan-blue solution (Sigma). Twenty
microliter of each mixture was immediately observed at
40· magnification using bright-field (Olympus IX81) or
differential-interference contrast (Olympus AX71)
microscopy (Olympus, Melville, N.Y., USA). From each
treatment, a total of six separate cell clumps, determined
to be typical of the total population and containing
>100 cells total, were observed for dye penetration.
Counts of essentially all cells within each clump were
made by carefully adjusting the Z-axis through the depth
of each clump.
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Results

Agar-plate-based viable counts

Various treatments to disperse mnn9 clumps into single-
cell suspensions, including brief sonication, EDTA,
mannose, enzymes, and shear by passage under pressure
through a very fine needle, were explored in preliminary
experiments. Sonication was most effective but still did
not disrupt all clumps, and did not increase the VC
proportionately with the increase in microscopic total
count (data not shown).

The mnn9 clumps proved to be stable during vor-
texing (Fig. 1a). Vortexing for increasing amounts of
time, and well beyond the few seconds normally used to
mix a sample prior to plating, did not result in VCs
outside the range that might be expected based on var-
iability among replicate samples that had received the
minimal vortexing needed to mix (Fig. 1b).

The reproducibility of the VC using undisrupted
suspensions of the mnn9 strain was assessed using re-
peated measures (initial and then 2–4 years later) within
each of 12 cell banks (banks for four distinct vaccine
antigens made by three distinct processes each; see
Fig. 2). The standard deviations (s) among repeated

tests were calculated in the natural log scale for each cell
bank, then pooled:

P
ðDFi � s2i Þ

Total tests among i cell banks� i cell banks

� �1=2

where DFi and si are degrees of freedom and standard
deviation, respectively, for the ith cell bank. The pooled
standard deviation was converted to pooled relative
standard deviation (RSD) using the relationship
RSD=100 (eSD�1). The pooled RSD for the mnn9
strain was 60%, consistent with that calculated for a
non-clumpy MNN9 strain (three cell banks each tested
multiple times over 10 years, pooled RSD among tests
52%).

Oxygen-sensing assay

The oxygen-sensing assay was explored as a possible
analytical surrogate for larger-scale liquid cultures in
order to reflect possible changes in viability of cell
banks. Reproducibility of the oxygen-sensing assay
among independent runs was assessed by comparing
times required to reach a fixed level of normalized
fluorescence units for a set of cryopreserved samples

3 sec 10 sec

32 sec 100 sec

50 microns50 microns

1.00E+07

CFU/mL

1.00E+06
100

second
vortex

mean of 8 3 second 10 second 32 second
control vortex vortex vortex
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second
vortex)

(a)

(b)

Fig. 1 Effect of vortexing on
a clumpiness and b viable
count. A cell suspension was
subaliquotted in 1-ml volumes
in 1.7-ml microfuge tubes. One
subaliquot was vortexed (Fisher
Vortex Genie3 II Model G-560,
speed setting 5–6) to mix for the
indicated time, then
immediately diluted and
inoculated onto duplicate agar
plates. The error bars on the
time-course results (3, 10, 32
and 100 s vortexing times)
represent the mean ± 1 SD and
reflect the variability among
plate counts for each mixed
aliquot. To assess the level of
variability that might be
expected simply by repeated
testing of the minimum
vortexing time, a set of eight
additional replicate subaliquots
were vortexed for 3 s each, then
diluted and plated in duplicate.
The error bar for a mean of
eight replicates (far left in b
represents the mean ± 2 SD,
indicating the 95% limits for
the distribution

502



diluted similarly among runs. The assay yielded consis-
tent results for two dilutions of each of four different
cryopreserved mnn9 cell banks across four independent
tests (Fig. 3). The pooled RSD, representing variability
among repeated tests as described above, was 8% for the
fourfold-diluted inoculations and 14% for the twofold-
diluted inoculations. Note that RSDs cannot be
compared directly between oxygen-sensing assays and
agar-plate based VC, because they differ in scale (a
twofold change in VC does not change time in the OS
assay by twofold, but rather by a single doubling time of
the cells).

Stability-indicating nature of the viability counts,
oxygen-sensing assay, and cell-staining methods
for the mnn9 strain

Cryopreserved cell bank samples were held either frozen
(unstressed) or thawed at 2–8�C for 3.5 days (to mimic
stress due to an extended thaw/hold period). The stres-

sed condition was previously observed to increase
growth time of mnn9 in liquid cultures. Performance in
viable counts and oxygen-sensing assays was compared
with that in shake-flasks, which reasonably represent a
first step in cell expansion in a manufacturing process.
The relationship between stressed and unstressed sam-
ples as determined by glucose consumption in shake-
flasks (Fig. 4c) mirrored that determined using oxygen
depletion in microplates (Fig. 4a). The relationship
between time to fixed index of growth in the oxygen-
sensing plates and shake-flask cultures was linear
(R2=0.98) across the range explored, but the slope of
the relationship, 0.84, suggested that oxygen consump-
tion in microplates may be slightly less sensitive to
changes in viability than glucose consumption in shake-
flasks (Fig. 4b).

The relationship between growth in the broth-based
cultures and VC was linear, although the predictive
power of the relationship was lower (R2=0.87), reflect-
ing the greater variability of the VC assay. The average
VC stressed/unstressed ratio among the four cell banks
tested (Fig. 4) was 0.26, corresponding to a change in
VC by 1.9 doublings (ln(0.26)/ln(2)). The average
growth time delay between stressed and unstressed
samples in shake-flasks was 7.0 h, representing approx-
imately 2.7 doublings (based on an average doubling
time of 2.6 h, data not shown). In a separate experiment,
the proportion of trypan-blue-impermeable cells in
clumps decreased from approximately 87% to 23% after
a similar 72-h incubation at 2–8�C, further supporting
the magnitude of the change in viability (Fig. 5).

Discussion

Results of this study suggest that the cell clumps of the
mnn9 strain are sufficiently coherent to allow meaningful
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interpretation of agar plate-based viable counts. This
result is important because clumpiness is generally
understood to complicate the interpretation of the VC
assay [16]. Postgate noted that viable counts, using
‘‘appropriate modifications’’, could yield meaningful
information about populations of cells that grow in
clusters, such as moulds and filamentous or cluster-
forming bacteria, although no single modification could
be applied to all systems [17]. Sonication or vigorous
vortexing have been recommended for disrupting
aggregates of bacteria, and addition of detergent is
commonly recommended for dispersion of mycobacteria

[13 and references therein]. Sonication was also used to
partially disrupt S. cerevisiae cell aggregates that re-
sulted from defects in chitin synthases [19], and floccu-
lated yeast were dispersed by addition of EDTA [21] and
mannose [3, 14, 22]. However, as noted earlier, neither
EDTA nor mannose dispersed the mnn9 clumps, and our
initial experience with sonication and shearing through
syringe needles suggested that cells released from clumps
were injured.

In contrast to sonication, the clumpiness of a typical
mnn9 cell suspension did not change perceptibly after
increasingly vigorous mixing by vortexing, nor did the
VC change outside the range that might be expected by
chance alone. In addition, clumpiness did not dramati-
cally affect the variability of the VC assay, as the RSD
among tests for the clumpy mnn9 strain was comparable
to that of a non-clumpy strain bearing MNN9 . Finally,
the loss in VC resulting from the stress designed to
simulate an overextended thawing period corresponded
with the delay in growth time observed in shake-flask
cultures. The difference in predicted loss in doublings
between VC and shake-flasks cultures (�1.9 doublings
and �2.7 doublings, respectively), suggests that, while
the VC assay is capable of detecting a loss in viability, it
may slightly underestimate the impact of this stress
treatment on growth in broth culture.

Determination of growth time in broth cultures is an
alternative means to reflect process-relevant changes in
inocula, since its interpretation is not compromised by
clumpiness. However, growth-time measurements can
reflect changes in the quality of the growth medium and
even the metabolic state of the cells in addition to
changes in viability. Other studies have demon-
strated the correlation between oxygen consumption in
oxygen-sensing microplate cultures and viable cell
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concentration for a variety of cell types as well as the
ability to monitor cytotoxity of drugs [15, 23] and to
calculate growth rates [20]. The present study demon-
strates the utility of the oxygen-sensing microplate as a
reasonable surrogate for larger-scale broth cultures of
this clumpy mnn9 strain for analytical purposes. The
close correlation between glucose and oxygen con-
sumption is consistent with the continued operation of
the respiratory pathway even as excess glycolytic pyru-
vate overflows into the fermentative pathway [1, 18].
Finally, the variability in time to reach fixed growth
thresholds among runs of oxygen-sensing plates com-
pares favorably with the variability of the VC assay,
although data are admittedly limited for the oxygen-
sensing assay. Other microplate-based strategies may be
similarly suited for analytical-scale broth-based assess-
ment of growth potential of a clumpy strain like mnn9,
for instance continuous measurement of optical density
(Bioscreen C, Growth Curves AB, Helsinki, FInalnd),
end-point measurement of reduction of tetrazolium
salts, or even quantitative PCR to detect proliferation of
viable cells in microplate cultures.

Alternatively, viability stains could be used if conve-
nient methods for counting individual cells in clumpy
suspensions were developed. The staining method
demonstrated in this study shows promise. Generally,
however, methods to test for viability in a routine
quality-control environment must be easy to perform,
and the method we used is not yet robust enough.

In conclusion, the three methods were capable of
reflecting changes in cell viability in clumpy mnn9 strains
of S. cerevisiae without disruption of clumps. The agar
plate-based viable count is perhaps the best suited
growth method for measurements over long periods of
time, while the oxygen-sensing microplate assay might
be better suited for simultaneous comparisons. Assessing
cell viability by permeability of membranes to trypan
blue was demonstrated, but would require some refine-
ment to make it ‘‘user-friendly’’ and objective in a
quality-control testing environment.
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